K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2021

Áp dụng bđt Bunyakovsky dạng phân thức ta có :

\(P=\left(\frac{a}{a+b}\right)^4+\left(\frac{b}{b+c}\right)^4+\left(\frac{c}{c+a}\right)^4\ge\frac{\left[\left(\frac{a}{a+b}\right)^2+\left(\frac{b}{b+c}\right)^2+\left(\frac{c}{c+a}\right)^2\right]^2}{3}\)(1)

Tiếp tục sử dụng bđt Bunyakovsky dạng phân thức ta có :

\(\left(\frac{a}{a+b}\right)^2+\left(\frac{b}{b+c}\right)^2+\left(\frac{c}{c+a}\right)^2\ge\frac{\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)^2}{3}\)(2)

Đặt  \(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)

Áp dụng bđt Cauchy ta có :

\(\frac{a}{a+b}+\frac{a+b}{4a}\ge2\sqrt{\frac{a}{a+b}\cdot\frac{a+b}{4a}}=1\)

=> \(A+\frac{a+b}{4a}+\frac{b+c}{4b}+\frac{c+a}{4c}\ge3\)

=> \(A+\frac{a}{4a}+\frac{b}{4a}+\frac{b}{4b}+\frac{c}{4b}+\frac{c}{4c}+\frac{a}{4c}\ge3\)

=> \(A+\frac{3}{4}+\frac{b}{4a}+\frac{c}{4b}+\frac{a}{4c}\ge3\)

Theo Cauchy ta có : \(\frac{b}{4a}+\frac{c}{4b}+\frac{a}{4c}\ge3\sqrt[3]{\frac{b}{4a}\cdot\frac{c}{4b}+\frac{a}{4c}}=\frac{3}{4}\)

=> \(A+\frac{3}{4}+\frac{3}{4}\ge3\)=> \(A\ge\frac{3}{2}\)(3)

Từ (1), (2) và (3) => \(P\ge\frac{3}{16}\)

Đẳng thức xảy ra <=> a = b = c

Vậy MinP = 3/16 <=> a = b = c 

15 tháng 1 2021

Ta có:

\(P=\left(\frac{a}{a+b}\right)^4+\left(\frac{b}{b+c}\right)^4+\left(\frac{c}{c+a}\right)^4=\left(\frac{1}{1+\frac{b}{a}}\right)^4+\left(\frac{1}{1+\frac{c}{b}}\right)^4+\left(\frac{1}{1+\frac{a}{c}}\right)^4\)

Đặt \(\left(\frac{b}{a},\frac{c}{b},\frac{a}{c}\right)=\left(x,y,z\right)\left(x,y,z>0\right)\) \(\Rightarrow xyz=1\)

Khi đó: \(P=\frac{1}{\left(1+x\right)^4}+\frac{1}{\left(1+y\right)^4}+\frac{1}{\left(1+z\right)^4}\)

\(\ge3\left[\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}+\frac{1}{\left(1+z\right)^2}\right]^2\)

Ta có: \(\left(1+xy\right)\left(1+\frac{x}{y}\right)\ge\left(1+x\right)^2\Leftrightarrow\left(1+x\right)^2\le\frac{\left(1+xy\right)\left(x+y\right)}{y}\)( Bunyakovsky)

\(\Leftrightarrow\frac{1}{\left(1+x\right)^2}\ge\frac{y}{\left(1+xy\right)\left(x+y\right)}\) ; tương tự: \(\frac{1}{\left(1+y\right)^2}\ge\frac{x}{\left(1+xy\right)\left(x+y\right)}\)

Áp dụng BĐT Cauchy: \(\frac{1}{\left(1+z\right)^2}+\frac{1}{4}\ge2\sqrt{\frac{1}{\left(1+z\right)^2}\cdot\frac{1}{4}}=\frac{1}{1+z}\)

\(\Rightarrow\frac{1}{\left(1+z\right)^2}\ge\frac{1}{1+z}-\frac{1}{4}\)

Khi đó: \(P\ge\frac{1}{3}\left[\frac{x}{\left(1+xy\right)\left(x+y\right)}+\frac{y}{\left(1+xy\right)\left(x+y\right)}+\frac{1}{1+z}-\frac{1}{4}\right]^2\)

\(=\frac{1}{3}\left(\frac{1}{1+xy}+\frac{1}{1+z}-\frac{1}{4}\right)^2=\frac{1}{3}\left(\frac{xyz}{xyz+xy}+\frac{1}{1+z}-\frac{1}{4}\right)^2\)

\(=\frac{1}{3}\left(\frac{z}{1+z}+\frac{1}{1+z}-\frac{1}{4}\right)^2=\frac{1}{3}\left(1-\frac{1}{4}\right)^2=\frac{3}{16}\)

Dấu "=" xảy ra khi: a = b = c

Vậy Min(P) = 3/16 khi a = b = c

NV
1 tháng 3 2020

\(\frac{a^4}{b^2c}+b+b+c\ge4\sqrt[4]{\frac{a^4b^2c}{b^2c}}=4a\)

Tương tự: \(\frac{b^4}{c^2a}+2c+a\ge4b\) ; \(\frac{c^4}{a^2b}+2a+b\ge4c\)

Cộng vế với vế:

\(VT+3\left(a+b+c\right)\ge4\left(a+b+c\right)\Rightarrow VT\ge a+b+c=5\)

Dấu "=" xảy ra khi \(a=b=c=\frac{5}{3}\)

13 tháng 9 2020

Bất lực, tìm được mỗi max P T.T

13 tháng 9 2020

Đề bài là GTNN :))

11 tháng 7 2017

tương tự Xem câu hỏi

NV
18 tháng 8 2020

Bạn tham khảo:

Câu hỏi của Nobody - Toán lớp 8 | Học trực tuyến

27 tháng 2 2018

ab+bc+ca = 4abc

<=> 1/a + 1/b + 1/c = 4

Áp dụng bđt : x^2+y^2+z^2 >= (x+y+z)^2/3 thì :

P >= 1/a^2+1/b^2+1/c^2)^2 /3

   >= [(1/a+1/b+1/c)^2/3]^2/3

     = [(4^2)/3^]2/3 = 256/27

Dấu "=" xảy ra <=> a=b=c=3/4

Vậy ........

Tk mk nha

5 tháng 9 2018

\(P=\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge\frac{\left(1+1+2\right)^2}{a+b+c}=\frac{16}{4}=4\)

5 tháng 9 2018

P=1/a+1/b+4/c > {1+1+2}^2/a+b+c

                       =16/4=16:4=4

11 tháng 9 2019

1a

\(A=\frac{3}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\ge\frac{6}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\)

\(\ge10+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{4}=10+\frac{1}{16}=\frac{161}{16}\)

Dau '=' xay ra khi \(a=b=\frac{1}{2}\)

Vay \(A_{min}=\frac{161}{16}\)

11 tháng 9 2019

1b.\(B=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^8+b^8}{4}\ge\frac{2}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^4+b^4\right)^2}{2}}{4}\)

\(\ge6+\frac{\left[\frac{\left(a^2+b^2\right)^2}{2}\right]^2}{8}\ge6+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{32}=6+\frac{1}{128}=\frac{769}{128}\)

Dau '=' xay ra khi \(a=b=\frac{1}{2}\)

Vay \(B_{min}=\frac{769}{128}\)khi \(a=b=\frac{1}{2}\)